EPA's Plan for MOVES: A Comprehensive Mobile Source Emissions Model

Emissions Inventories--Partnering for the Future Atlanta, April 17, 2002

John Koupal, Harvey Michaels, Mitch Cumberworth, Chad Bailey, and Dave Brzezinski U.S. EPA, Office of Transportation and Air Quality, Ann Arbor MI

MOVES

- Multiscale
- motor
- Vehicle and equipment
- **E**missions
- System

Outline

- Why a new mobile source model?
- Use Cases
- Conceptual Design
- Analysis of Emission Data
- Software Design and Development
- Implementation Plan and Timeline

Why a New Mobile Source Model?

- Comprehensive
- Multiscale
- Able to calculate uncertainty
- Able to take advantage of on-board data
- Interface with other models
- Easy to use
- Easy to update

Objectives of MOVES

- Increase scope and flexibility
- Improve the science
- Improve the software

Use Cases: Focus on broad purpose

- Inventory development for EPA Reports and Regulations
- Inventory development for regulatory requirements
- Policy evaluation
- Hot spot and project level analysis
- Model validation and uncertainty
- Model updates and expansion

Use Cases: Focus on I/O

- Macroscale, mesoscale, microscale, each of which requires different inputs
- Inputs and output exchanged with other models

Use Cases: Focus on user interaction

- A powerful, versatile GUI
- Batch interface
- Flexible I/O formats
- Output processing
- Accept MOBILE-like inputs, produce MOBILE-like outputs

Use Cases Hierarchy

Conceptual Design

- Emission processes
- Generic approach
- Total activity as vehicle-time
- Core model/Enhanced model
- Importers for various data sources

Emission Processes

Combustion Products	Hydrocarbon Evaporation	Other	
Tailpipe Running Exhaust	Diurnal	A/C Refrigerant Leakage	
Tailpipe Start Exhaust	Hot Soak	Brake Wear	
Crankcase	Resting Loss	Tire Wear	
	Running Loss		
	Vehicle Refueling		
	Fuel Leakage		
	Offgassing		

Emission processes handled separately--each may represent a submodel

U.S. EPA/OTAQ Atlanta, 4/17/02 11

Conceptual Model: Definitions

- Fleet bins = vehicle population subcategories that differentiate emissions
- Operating modes = activity categories that differentiate emissions
- Emission rates = most disaggregated
- Emission factors = aggregated

Conceptual Model: Emissions Calculation

- 1. Total activity (vehicle-time)
- 2. Distribute across fleet bins and operating modes
- 3. Calculate/look up Emission Rate for each fleet-operating mode bin
- 4. Aggregate using distributions from Step 2

Generic Emissions Calculation

- Front end
 - Run spec/GUI
 - Importers/data Manager/external model interfaces
- Core Model
 - Fleet activity distributor--differ by emission process
 - Generic emission rate estimator--differ by emission process
- Back end--Aggregate, summarize, external model interfaces

Generic Data Flow

Enhanced System

Core Model

Iterate by Process, Pollutant, Place, Time, Vehicle Type

U.S. EPA/OTAQ

Atlanta, 4/17/02

15

Layered View of MOVES Design

LAYERS	COMPONENTS						
Control 1	Run Spec/GUI						
Control 2	Monte Carlo Controller						
Control 3	Time and Space Looper						
Application 1	Input	Core	Output				
	Data Manager Importers Growth Model	Fleet/Activity Distributor Emissions Rate Estimator	Aggregate Summarize Analyze Compare Export Visualize Archive Runs				
Database 1	Input Databases	ER Databases	Output databases				
Utility	Visualization Tools, DBMS Tools, Data Browser, API, MIMS utilities						
Application 2	Data Crank, Extend Model						

Database 2	Archived runs: runs specs and output databases for later comparisons
Database 3	Supporting Data for Data Crank: MSOD, Other data

Analysis of Emission Data

- Objectives:
 - consistency across scales
 - use maximum amount of available data
 - easily updated
 - practical software

Analysis of Emission Data (cont.)

- On Board Emission Analysis Shootout
 - Task
 - 12 LDV, 12 Buses, 3 NR
 - 3 contractors
 - Analysis task
 - Validation

Analysis of Emission Data (cont.)

- On Board Emission Analysis Shootout
 - Approaches
 - Physical model
 - Modal binning
 - Database lookup
 - Microtrip

Analysis of Emission Data:

On-road shootout results summary

Analysis of Emission Data: Feasibility Criteria

Feasibility Criteria	Physical Model	Modal Binning	Database	Microtrip
Consistent Across Scales?	X	X		
Easily Updated?		X	X	X
Can Incorporate Many Data Sources?		X	X	
Software Efficiency?	X	X		X

Software Design

- Goals
 - maintainable
 - extendable
 - well-documented
 - easy to use
- **MIMS**
- Iterative development

Software Design (cont.)

- Efforts to date
 - Core system (Cimulus, Inc.)
 - Use cases, GUI, and overall design (MCNC)
 - Preliminary decisions
 - Java
 - Unit and system testing
 - Iterative development
- Working on version control, DBMS

Model Quality

- Drafting QAPP
 - Model quality, objectives, and assessments
 - Standards
 - Stakeholder and scientific peer review
- Validation
- Uncertainty
- Peer review

Implementation Plan

- Iterative approach
- GHG Implementation Fall 2003
- HC, CO NOx SOx, PM, NH3, and air toxics on road multiple scales Fall 2005

Summary

- Objectives
- Use cases
- Generic core model and importers
- Emission analysis by modal binning
- Macroscale, mesoscale, microscale
- OO-design in Java, testing, iteration
- QAPP--objectives, testing, peer review
- Produce GHG, then on-road implementation